

JAMA電子情報フォーラム2018

金属製輸送容器(RTI)用RFIDに関する 国際標準化

一般社団法人 日本自動認識システム協会

金属製RTI用RFID検討委員会 推進委員:新海 直樹

2018年2月16日

1 (一社)日本自動認識システム協会の取り組み紹介

全属製RTI用RFIDに関する国際標準化 推進体制と実施スケジュール

3 取り組みの背景と実施内容

一般社団法人日本自動認識システム協会(JAISA)とは? Japan <u>Automatic Identification Systems Association</u>

1. 設立目的

自動認識機器及びそれに関連するソフトウェアに関する調査研究、規格の立案及び標準化の推進、 普及及び啓発等を行うことにより、製造、物流、流通等のシステムの効率化及び高度化の推進を図り、 もって我が国経済の発展及び、国民生活の向上に寄与する。

2. 活動概要

① 自動認識システムに関する普及啓発

- ・自動認識総合展(東京・大阪)及び自動認識関連セミナーの開催
- ・自動認識システム大賞の認定・表彰 等

② 人材育成

•自動認識技術者資格試験の開催と運営 等

③ 標準規格立案・策定と標準化推進・普及

- ・国際標準規格「ISO」「ISO/IEC」関連規格の立案・策定、及び改訂の実施と普及活動
- ·国内標準規格「JIS」関連規格立案·策定及び改訂の実施と普及活動等

<u>④ 調査・研究</u>

・自動認識市場に関する統計調査報告書の作成と報告 等

⑤ 業界関連団体・関連省庁との交流

- ・業界として解決すべき課題の発見・解決の為の体制構築
- ・関連省庁への業界の最新情報や要望の発信等

自動車業界におけるAIDC標準化活動とJAISAの関わり

1. 自動車業界のAIDC標準規格・ガイドラインとISOの関係

JAIF Global Item Level Standard 及び JAIF Global Returnable Transport Item Guidelineは ISO 1736xシリーズを参考に制定されている

<ISO 1736xシリーズ> RFIDのサプライチェーンへの適用 規格群

ISO 17363 Supply chain applications of RFID -- Freight containers 輸送コンテナ

ISO 17364 Supply chain applications of RFID -- Returnable transport items (RTIs) and returnable packaging items (RPIs)

リターナブル輸送器材とリターナブル包装器材

ISO 17365 Supply chain applications of RFID -- Transport units 輸送単位 ISO 17366 Supply chain applications of RFID -- Product packaging 製品包装 ISO 17367 Supply chain applications of RFID -- Product tagging 製品タグ

2. ISO 1736xシリーズとJAISAの活動

- ① 2003年~ ISO/TC122(包装)下のAIDC関連WGの国内審議団体として活動
- ② ~2009年 ISO 1736xシリーズ第1版の制定審議に参加
- ③ ~2013年 ISO 1736xシリーズ第2版の制定審議に参加
- ④ ~2017年 ISO 1736xシリーズのJIS化(JIS Z 066xシリーズ)を実施

3. 自動車業界のAIDC標準化活動とJAISAの活動

① 2014年~ JAMA AIDC-WGからの要請を受け、

ISO 1736xシリーズ改訂(RFタグへの8bit文字使用可能対応)活動を実施

② 2016年~ JAIF RFID Expert会議へ参加し、

Global Returnable Transport Item Guidelineの改訂及び

Global Item Level Standardの改訂に対して、

ISOの観点から技術的な支援を実施

 1
 (一社) 日本自動認識システム協会の取り組み紹介

 2
 金属製RTI用RFIDに関する国際標準化 推進体制と実施スケジュール

 3
 取り組みの背景と実施内容

実施体制·役割分担

NRI 野村総合研究所

JAISA

日本自動認識システム協会

- ・全体取りまとめ
- ·委員会開催
- ·国際標準化提案内容· 方法検討
- ·国際標準化原案作成

東洋製罐グループ ホールディングス

- ・評価試験
 - ・RFタグ交信性能
 - ·RFタグ耐性評価

総合容器メーカー 金属の専門家 金属対応RFタグ DENSO デンソーエスアイ

- ·実証試験(実環境評価)
 - ・RFタグ交信性能
 - ·RTI管理実運用試験

【事業概要】 生産物流情報 |システムの開発/販売/保守

全体スケジュール

H26年度

H27年度

H28年度

H29年度

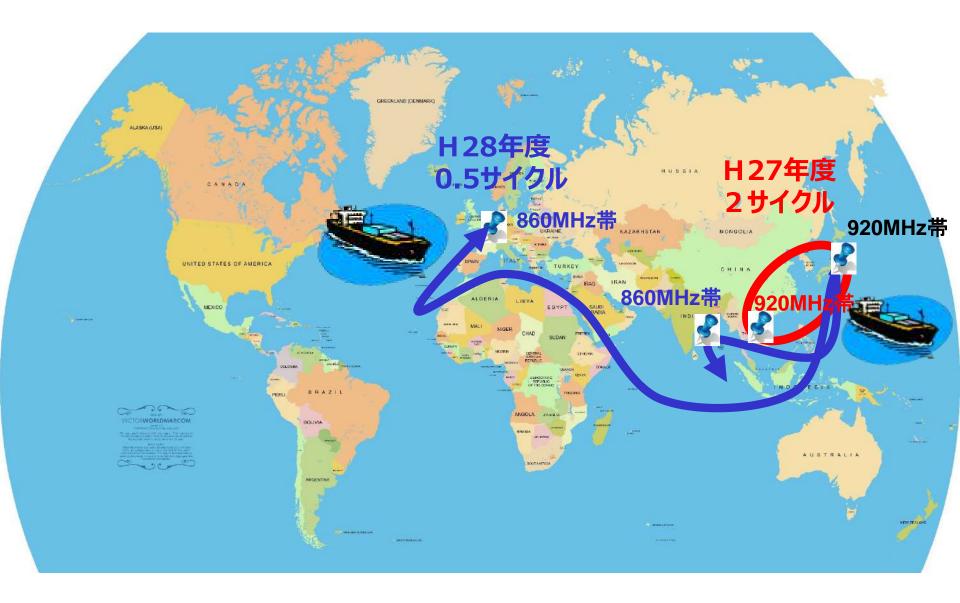
ISO TR(*)化提案 TRドキュメント作成

ISO TR 提案中

* Technical Report

FS

(Feasibility Study) 実証実験

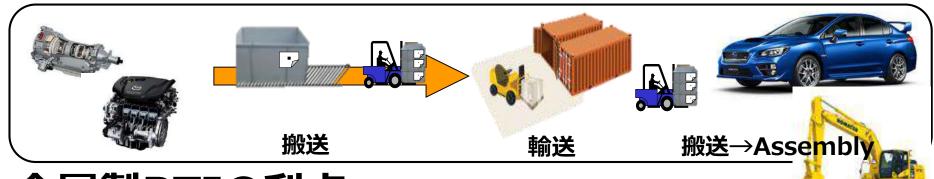

(性能と耐久性)

実証実験

(電波法差異)

⇒ 海外現地生産を推進している自動車業界と 建機業界の大手2社に協力頂く

実証実験実施エリアと周波数帯



1(一社) 日本自動認識システム協会の取り組み紹介2金属製RTI用RFIDに関する国際標準化推進体制と実施スケジュール3取り組みの背景と実施内容

金属製RTIの特徴

金属製RTIの利点(木製RTIや樹脂製RTIと比較して)

- ・重量のある車の部品の輸送が可能
- ・長期利用が可能
- ·耐負荷性能
- ·耐環境性能(UV, 高温多湿、寒冷etc)

• [MOTTAINAI] (3R+R) Reuse, Recycle, Reduce and Respect to our earth

Reuse, Recycle

木の伐採量削減

目が行き届かない=放置

AutoID技術を使った金属製RTI管理の環境要件

"高速自動化":フォークリフト移動

角度、距離、場所が異なる場所にシンボルを貼付して読み取り可能か?

"複数一括": 段積みされたRTI

同時に複数のシンボルを移動中に読み取り可能か?

バンニング、デバンニング

段積み

在庫

1D、2Dシンボル (バーコード、QR等)での自動化困難

4つの課題

金属製RTIをRFID化し輸出入活用する際の課題とは?

RFIDと金属との相性

金属製RTIをRFID化する目的&範囲の見定め

自動車部品の国際物流の環境

標準化動向の影響

RFIDと金属との相性

- 1. 金属に貼付しただけでは性能 0
 - →RFタグの選定(金属対応RFタグ)

例: 東洋製罐製金属対応RFタグ

- 2. 周囲金属による反射電波の影響 (誤読等)
 - →運用設計(動線設計、電波吸収体設置等)

4つの課題

金属製RTIをRFID化し輸出入活用する際の課題とは?

RFIDと金属との相性

金属製RTIをRFID化する目的&範囲見定め

自動車部品の国際物流の環境

標準化動向の影響

金属製RTIをRFID化する"目的"

①動脈物流上でのデータキャリア

RTIと現品票等の紐づけ

②RTIの量的管理

必要量と在庫の管理

③高額なRTIの個体把握 常味: 金属製RTIでは必要だが、プラパレ、ダンプラ等では不要

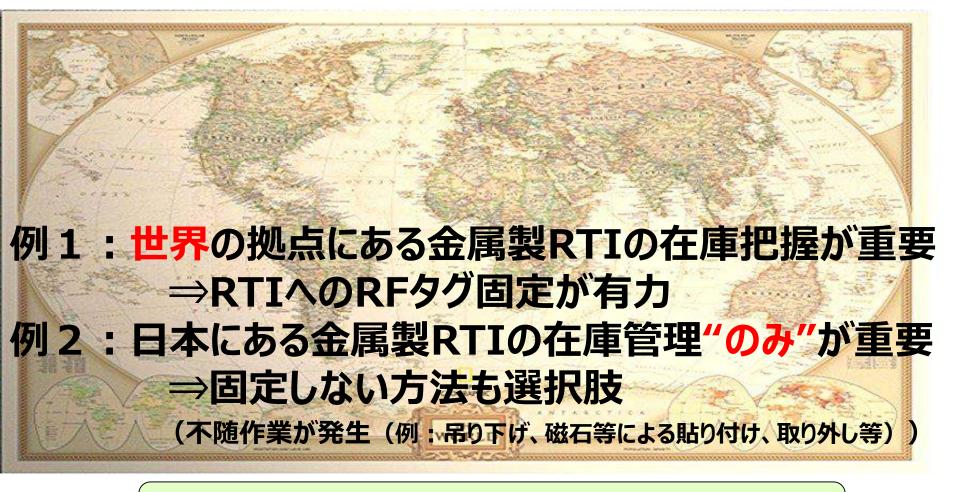
物流 (動脈&静脈) 上での個体識別

④状態管理が必要或いは

高額なRTI個体のライフサイクル管理

製造から修理、廃却までの生涯把握

国際物流では海外の実態把握のために③, ④が重要


⇒ 実証実験では③、④を想定

樹脂•木材•金属共通

金属製RTIをRFID化する"範囲"

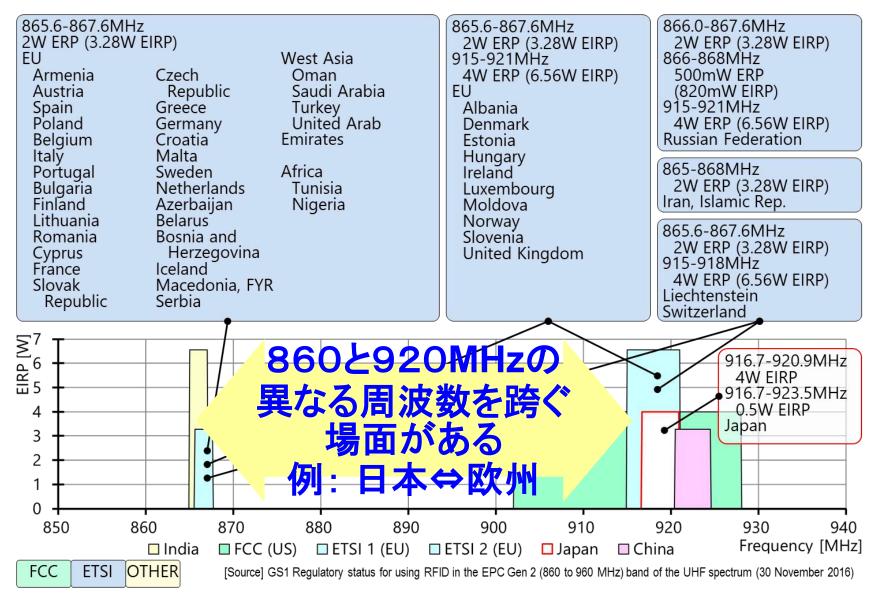
②RTIの量的管理 での例

実証実験では例1を想定

4つの課題

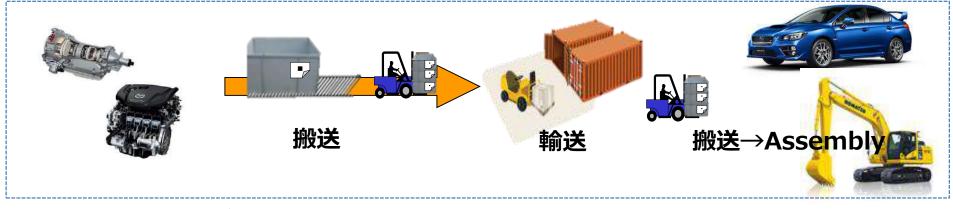
金属製RTIをRFID化し輸出入活用する際の課題とは?

RFIDと金属との相性


金属製RTIをRFID化する目的&範囲の見定め

自動車部品の国際物流の環境

標準化動向の影響



電波法相違(周波数相違)

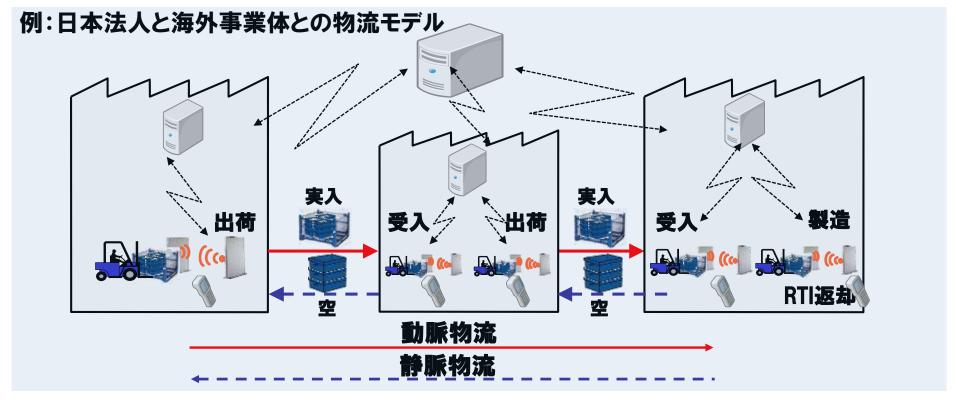
金属製RTIの耐環境要件

★RFタグにも金属製RTIと同等の負荷

耐久性

- •環境
 - (高温高湿、低温、UV等)
- ・耐性 (衝撃、振動、イミュニティ等)

交信性能評価



- ・タグの取付条件や方法
- •経年変化
- 周囲環境の影響
- ・付着物の影響 等

★評価項目が多岐、かつ多くの時間が必要

金属製RTIの上位管理の困難性

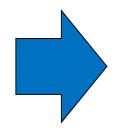
金属製RTIの情報管理(サーバ上のデータ)が陳腐化する要因

*** ID情報の貼付 (QR、RFID等)

サーバ、クラウド

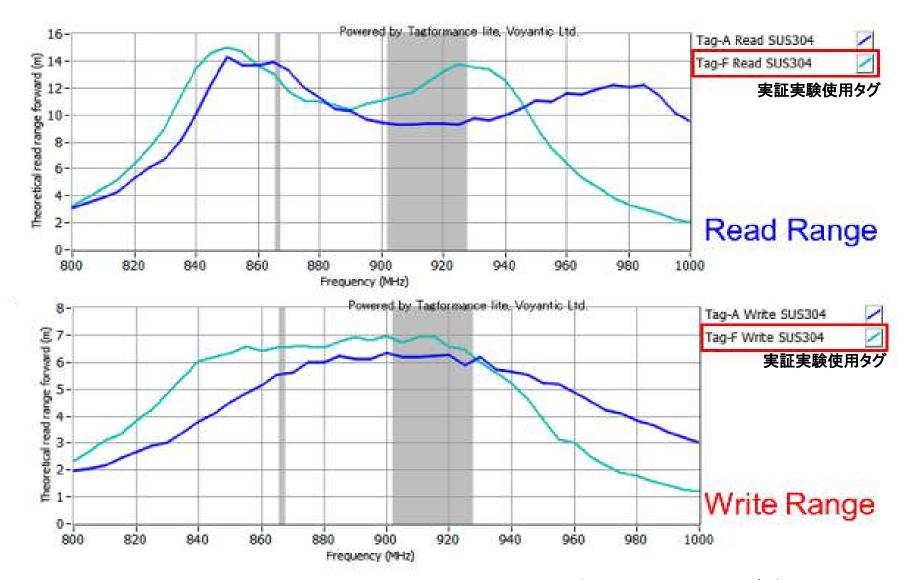
⇒入れ替え、修理、IDはがれ

①高頻度のメンテナンス ②自動読取りの困難さ ⇒バーコード、QRでは特に


屋内、屋外、段積み高所

情物一致は困難

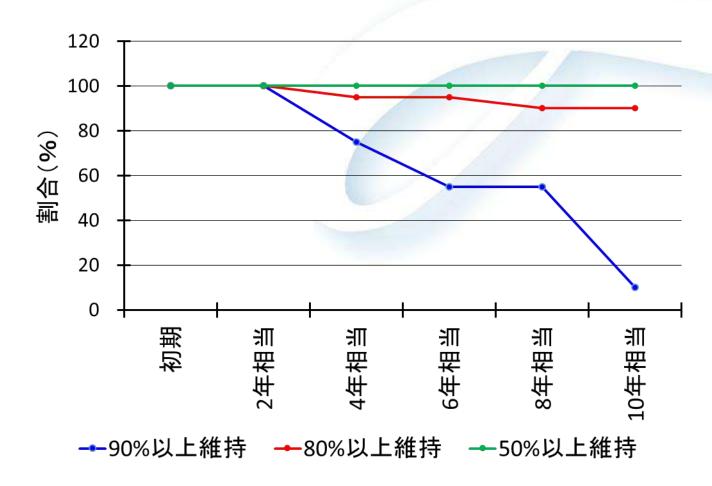
自動車部品の国際物流への適用の際の課題


- 1. 電波法相違の影響
- 2. 性能と耐久性
- 3. 国際物流現場での情物一致

実証実験で評価 (ISO TRに反映)

H28年度の実証実験使用タグの特性 (東洋製罐GHD評価)

860MHz、920MHzとも読み書き性能が必要



RFタグ耐性評価 結果

促進試験

06 耐候性試験結果

RFタグ耐性評価

促進試験

No.	試験項目	試験条件	結果
01	高温高湿保管	85℃85% 1000時間	△10年相当で初期の90%の交信可能距離を維持できない(通信可)
02	低温保管	-80℃ 60日間	○問題無し
03	高温保管	100℃ 3500時間	△10年相当で初期の90%の交信可能距離を維持できない(通信可)
04	ヒートサイクル	-40~100℃ 各温度で20分保持、 630サイクル (1サイクル約2時間)	△10年相当で初期の90%の交信可能距離を維持できない(通信可)
05	ヒートショック	-40~125℃ 各温度で20分 保持、730サイクル	○問題無し
06	耐候性試験	120分 光照射(そのうち18分 シャワ)のサイクルを3000時間	△10年相当で初期の90%の交信可能距離を維持できない(通信可)

環境と耐久性要件の明確化の必要性

RFタグ耐性評価

外部影響に対する耐性試験

No.	試験項目	試験条件	結果
07	ブロック衝撃試験	ISO 8611-1:2011ブロック衝撃試験をタグに適用	×樹脂筐体が破壊された(通信可)
08	振動試験	3G, 1軸跳ね返りランダム振動、3時間	○問題無し
09	衝撃試験	100G, 正弦半波、6msパレット貼付状態で落下	○問題無し
10	塩水噴霧試験	35℃ 96時間	○問題無し
11	イミュニティ	50V/m(電磁界) 25kV(静電気)	○問題無し
12	耐薬品性試験	想定薬品に2h浸漬	△一部液体に侵される場合有り

環境と耐久性要件の明確化の必要性

UIIとユーザエリアを活用した情物一致状態の継続

ユーザエリア(MB11)の活用

- ① ISO17364(JIS Z0664)で規定されているDI方式(no-directory方式)を採用
- ② 6bit格納

【格納項目】

	項目	桁数	内容	想定使用目的
1	P/O No.	20	Parts Order No.	・海外拠点での受入管理で使用
2	C No.	11	Case No.	一一一
3	回転回数	3	RTIの回転(使用)回数	・資産管理部署としてのRTI管理
4	荷揃え日付	6	荷揃え梱包日	・出荷管理としての必要項目
5	バンニング 日付	6	日本でのバンニング	
6	デバンニング日付	6	現法でのデバンニング	・【ライフサイクル管理】
7	バンニング 日付	6	現法でのバンニング	滞留品の見える化と回転率の促進
8	デバンニング日付	6	日本でのデバンニング	バンニング、デバンニング毎に
9	通過工程	10	RTI(RFタグ)の通過場所	読み書き(上書き)
10	型式	12	型式	
11	シリアルNo.	4	シリアルNo.	
	桁数合計	90	-	_

UIIエリア(MB01)

- ① ISO17364(JIS Z0664)に準拠。
- ② 6bit格納。
- ③ リターナブル容器管理のためISO識別子のD I は25B(リターナブル容器)とする。
- ④ 発番機関コード、企業コードは国際展開可能なDUNS・No.とする。

→ Dun & Bradstreet = 日本では東京商工リサーチ

【格納項目】

	DI (RTI)	発番機関	企業コード		シリアル No.(協力企業の必要データ)					
データ	25B	UN	000000000	00	00	00000000000	0001			
桁数	3	2	9	2	2	12	4			

台計 3 4 桁

〇: 本資料上はデータ非記載

大容量タグ使用上の注意点

ユーザエリアへの読み書きはUIIより遅い

(機種によっては百倍以上)

<工夫例>読み書き範囲の最小化

例:全書込みと部分書込みによるバンニング工程のRFタグのユーザエリア読み書き時間 (金属製RTI3段(3個のRFタグ)の場合)

	データ量	UII読取 時間	USER読取 時間	USER書込 時間	Total 時間
全書き込み	864bits	0.500s	0.631s	0.859s	1.990s
部分書込	128bits	0.454s	0.342s	0.386s	1.182s

⇒タグとの交信時間を短くできる

搬送速度が早い現場で有効

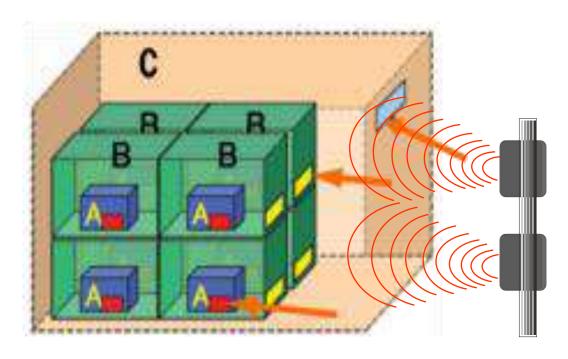
読み書きが終わる前に交信範囲を通過してしまうリスクを低減

読み書きの速度=読み書きの精度

4つの課題

金属製RTIをRFID化し輸出入活用する際の課題とは?

RFIDと金属との相性


金属製RTIをRFID化する目的&範囲の見定め

自動車部品の国際物流の環境

標準化動向の影響 (8bit化等)

将来は・・・(ありうる現実①)

理想:

C: 車両メーカ所有の金属製RTI ISO 6 bit

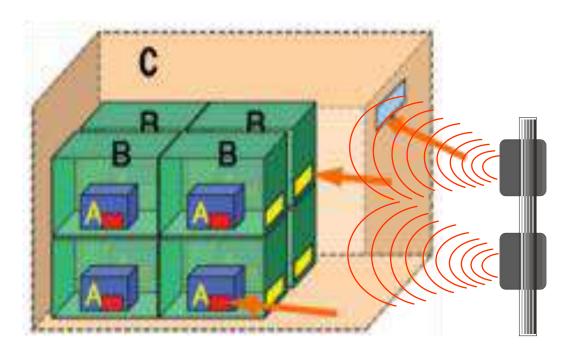
B: 部品メーカ所有の樹脂製RTI ISO6bit

A: 2次サプライヤの個装箱

ありうる例:

ISO 8bit

EPC(GS1)


ISO 6bit

ISO 6 bit

→ 複数のコード体系

将来は・・・(ありうる現実②)

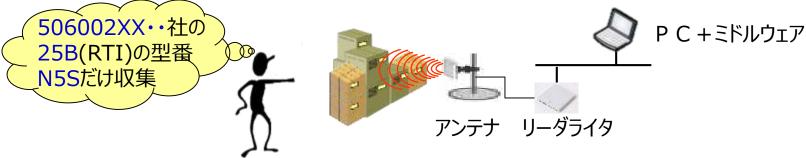
ありうる例:

C: 車両メーカ所有の金属製RTI 6bit

B: 部品メーカ所有の樹脂製RTI 6bit (自社管理用)

+6bit(車両メーカ管理用)

→ 1つのRTIに複数のRFタグ



対応策

意図したタグとのみ交信可能なフィルタリング機能

* 不要なデータは読み飛ばす

データ識別子 発番機関コード		企業コード	シリアルNo.		
2 5 B	LA	5 0 6 0 0 2 X X X X X X	202ABN5S00···		

実装箇所:

- → アプリケーション
- → 汎用ミドルウエア
- → R/W組み込みミドルウエア

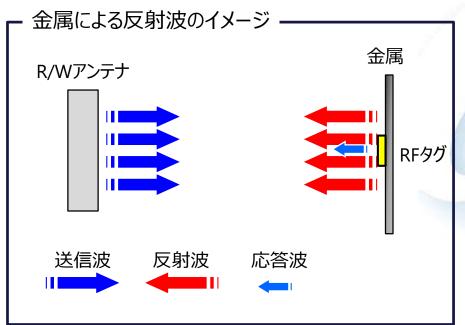
参考:対応策の設定例:

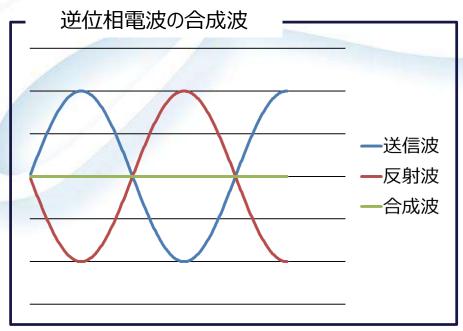
http://www.denso-si.jp/dictionary/rfid/index.html

今後の予定

ISO TR発行(2018年度1Q予定)

金属製RTI用RFID導入ガイドラインを発行予定。2017年度末までに。


ご清聴ありがとうございました。


引き続きJAMA活動へのご理解とご協力を 宜しくお願い致します。

金属対応RFタグとは

汎用のRFタグは、金属へ取付けた場合に交信が出来なくなる。 その原因は、主に金属で反射した電波が弊害となるためである。 (反射波は位相が 反転するため、送信波のエネルギーを弱めてしまう。)

金属対応RFタグは、金属からの反射波を低減、利用(位相を合わせるなど)して金 属へ取付けても交信が可能なRFタグのことである。

現品ラベル等のタグ化

【補足資料】

257	310- 9 7	721	539	0 .	A 8	31
製造日 03月11日 製造時間 13:30	品名 メータ ケース質能A56 357 XAS 027W(日		20)	^{#⊕} ○ H7	85
013/050 851 894	12345-67	7890-12	2 A1	C	4n	** C

得意先品番 12345-67890-1234					A 831	
ス荷姿A56 (B)		回 ^{収容数} 20			ਅਰਤਨ H 785	
社内品番 25731	0-9721	^{包装} A1	工程記号	世代 〇	ê O	
	ス荷姿A56 (B) 社内品番	ス荷姿A56 (B) (B)	- 67890- 1234 ス荷姿A56 (B) センドン・マート・マート・マート・マート・マート・マート・マート・マート・マート・マート	ス荷姿A 56 (Page 12	- 67890- 1234 539 A8 ス荷姿A56 においます。 「	

